Physics 121 Equations

Chapter 2: Kinematic in one dimension

$x_f = x_i + v_i \Delta t + \frac{1}{2} a \Delta t$ $v_f = v_i + a \Delta t$ $v_f^2 = v_i^2 + 2a \Delta x$	2 Kinematic equations for linear motion when the acceleration is constant.
$v_x = \frac{dx}{dt}$	Calculus of the velocity function.
$a_x = \frac{dv_x}{dt}$	Calculus of the acceleration function.
$x_f = x_i + \int_{t_i}^{t_f} v_x dt$	Calculus of the velocity/position functions.
$v_f = v_i + \int_{t_i}^{t_f} a_x dt$	Calculus of the velocity/acceleration function.
$a = g\sin\theta$	Acceleration of object on $\underline{\text{frictionless}}$ incline.
$\omega = \frac{d\theta}{dt}$	Definition of angular velocity.

Chapter 3: Vectors

$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$ Adding vectors using components.	
$ \vec{A} = \sqrt{A_x^2 + A_y^2}$	Magnitude of a vector.
$\theta = \tan^{-1} \frac{Ay}{Ax}$	Angle a vector makes with the x-axis.
$A_x = A\cos\theta$ $A_y = A\sin\theta$	Vector components (When θ is measured from the x-axis)

Chapter 4: Kinematic in two dimensions

$\omega = \frac{d\theta}{dt}$	Definition of angular velocity.
$\alpha = \frac{d\omega}{dt}$	Definition of angular acceleration.
$a_c = \frac{v^2}{r} = \omega^2 r$	Definition of centripetal acceleration.
$T = \frac{2\pi r}{v} = \frac{2\pi}{\omega}$	Definition of period.
$\begin{split} \omega_f &= \omega_i + \alpha \Delta t \\ \theta_f &= \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2 \\ \omega_f^2 &= \omega_i^2 + 2\alpha \Delta \theta \end{split}$	Kinematic equations for rotating objects when the acceleration is constant.
$s = r\theta$	Conversion from angular position to position along the arc.
$v = r\omega$	Conversion from angular velocity to tangential velocity.

 $a=r\alpha$

$\vec{v}_{CB} = \vec{v}_{CA} + \vec{v}_{AB}$	Relative motion conversion. (Given an object's velocity in one frame of reference, what is
	that object's velocity in another frame of reference)

Chapter 6:	Newton's	\mathbf{Second}	Law
------------	----------	-------------------	-----

$ec{F}_{ m net}=mec{a}$	Newton's Second Law.
$\vec{F}_{\rm B \ on \ A} = -\vec{F}_{\rm A \ on \ B}$	Newton's Third Law.
$\sum F_x = 0$ $\sum F_y = 0$	Conditions for equilibrium.
$F_G = mg$	Force of gravity
$f_{\rm s\ max} = \mu_s N$	Static Friction.
$f_{\mathbf{k}} = \mu_k N$	Kinetic Friction.
$f_{\rm R} = \mu_R N$	Rolling Friction.
$\vec{D} = \frac{1}{2}C\rho Av^2$	Air Drag (resistance).
$v = \sqrt{\frac{2mg}{C\rho A}}$	Terminal velocity.

Chapter 8: Newton's Second Law for circular motion

$\sum F_r = ma_r = m\frac{v^2}{r} = m\omega^2 r$	Newton's Second Law in radial direction.
$\sum F_t = ma_t$	Newton's Second Law in tangential direction.
$v = \sqrt{rg}$	Speed of orbiting object

Chapter 9: Work and Energy

$W = \int_{s_i}^{s_f} F_s ds$	Work (non constant force)
$W = \vec{F} \cdot \Delta \vec{r}$	Work (constant force)
$W_{\rm net} = \Delta K$	Work-Kinetic Energy theorem
$K_i + U_i + W_{\text{ext}} = K_f + \delta$	$U_f + \Delta E_{\rm th}$ Conservation of energy including work and friction
$\Delta E_{\rm th} = f_k \Delta s$	Thermal Energy
$F_s = -\frac{dU}{ds}$	Relation between force and potential energy (conservative force)
$P = \frac{dE}{dt}$ $P = \vec{F} \cdot \vec{v}$	Power

Chapter 10: Energy

$K = \frac{1}{2}mv^2$	Kinetic Energy.
$U_g = mgy$	Gravitational Potential Energy.
$U_s = \frac{1}{2}k\Delta s^2$	Elastic Potential Energy.
$K + U_g + U_s$	Mechanical Energy.
$K_f + U_f = K_i + U_i$	Conservation of Mechanical Energy.
$F = -k\Delta s$	Hooke's Law.
$(v_{fx})_1 = \frac{m_1 - m_2}{m_1 + m_2} (v_{ix})_1$ $(v_{fx})_2 = \frac{2m_1}{m_1 + m_2} (v_{ix})_1$	Perfectly elastic collisions

Chapter 11: Momentum

$\vec{p} = m\vec{v}$	Linear momentum.
$J = \int_{t_i}^{t_f} F(t) dt$	Impulse.
$\Delta p_x = J_x \Delta p_y = J_y$	Impulse-momentum theorem.
$\vec{F} = rac{d\vec{p}}{dt}$	Newton's Second Law.
$(p_{fx})_1 + (p_{fx})_2 + \cdots = (p_{ix})_1 + (p_{ix})_2$	Conservation of momentum.

Chapter 12: Rotational Motion

$\vec{\tau} = \vec{r} \times \vec{F}$	Torque
$x_{\rm cm} = \frac{m_1 x_1 + m_2 x_2 + \dots}{m_1 + m_2 + \dots}$	Center of Mass
$x_{\rm cm} = \frac{1}{M} \int x dm$	Center of Mass
$I = m_1 r_1^2 + m_2 r_2^2 + \dots$	Moment of Inertia
$I = \int r^2 dm$	Moment of Inertia
$\vec{\tau} = I \alpha$	Newton's Second law for rotational situation
$ec{ au} = rac{dec{L}}{dt}$	Newton's Second law for rotational situation
$L = \vec{r} \times \vec{p}$	Angular Momentum of collection of point masses
$L = I\omega$	Angular Momentum of solid object

$I = I_{\rm cm} + md^2$	Parallel-axis theorem
$I = \frac{2}{5}mR^2$	Moment of Inertia for solid sphere rotated about its center
$I = \frac{2}{3}mR^2$	Moment of Inertia for a hollow sphere rotated about its center.
$I = mR^2$	Moment of Inertia for hoop or thin cylindrical shell rotated about center
$I = \frac{1}{2}mR^2$	Moment of Inertia for solid cylinder or disk rotated about its center
$I = \frac{1}{12}mL^2$	Moment of Inertia for long rod rotated about its center.
$I = \frac{1}{3}mL^2$	Moment of Inertia for long rod rotated about its end.
$K_{\rm rot} = \frac{1}{2}I\omega^2$	Rotational kinetic energy.

Chapter 13: Gravitation

$\vec{F}_{\text{Monm}} = -\vec{F}_{\text{monM}} = \frac{GN}{r}$	$\frac{4m}{2}$ Force of gravity between two objects.
$v = \sqrt{\frac{GM}{r}}$	speed an orbiting object must have.
$T^2 = \left(\frac{4\pi^2}{GM}\right) r^3$	Kepler's third law.
$U = -\frac{GMm}{r}$	Gravitational potential energy.
$v = \sqrt{\frac{2GM}{r}}$	Escape speed.
$g = \frac{GM}{R^2}$	free-fall acceleration at surface of planet.

Useful Math equations

quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

quadratic formula: $x = \frac{-d \cdot q}{2a}$ Trigonometric functions: $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ Dot Product: $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y = |A||B| \cos \alpha$ (α is the angle between the two vectors) Cross Product: $\vec{A} \times \vec{B} = |A||B| \sin \alpha$ (α is the angle between \vec{A} and \vec{B} . Direction given by the right-hand rule)

Constants

Mass of Earth: 5.98×10^{24} kg Radius of Earth: 6.37×10^{6} m Free fall acceleration: $g = 9.80 \text{ m/s}^2$ Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$

Conversions

 $1~\mathrm{in}=2.54~\mathrm{cm}$

- $1 \ \mathrm{mile} = 1.609 \ \mathrm{km}$ 1 mile = 1.005 km 1 meter = 39.37 in 1 mph = 0.447 m/s 1 rad = $180^{\circ}/\pi = 57.3^{\circ}$ 1 rev = $360^{\circ} = 2\pi$ rad